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Efficient numerical modelling of 
hydrogen diffusion with trapping 
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Faculty of Mathematics, The Open University, Milton Keynes, Bucks, UK 

In view of the growing interest both in numerical solutions of the McNabb and Foster 
model for hydrogen diffusion with trapping, and the computational scheme proposed 
by Caskey and Pillinger, a more efficient, simpler scheme is presented which more 
closely replaces this model. Further techniques are presented which reduce the cost of 
the computations yet increase the accuracy of the results. Using a formulation better 
adapted to analysis, and with readily comprehensible variables, bounds are given on 
the numerical mesh sizes which ensure the stability of the scheme. For cases where 
these bounds are overly restrictive, alternative numerical tests are suggested, Finally, 
driving equations are given on which an approximation to the McNabb and Foster 
model in which the concentration of traps varies with time may be validly based. 

1. Introduction 
In their seminal paper "A New Analysis of the 
Diffusion of Hydrogen in Iron and Ferritic Steels", 
McNabb and Foster [1] published in 1963 the 
mathematical model now commonly referred to as 
"hydrogen diffusion with trapping". The driving 
equations of the model form a coupled, non-linear, 
second-order system of two partial differential 
equations, involving four parameters. Even with 
the simplest non-trivial boundary and initial con- 
ditions, the model has not, so far, been solved 
analytically except in a few limiting cases. In the 
present state of experimental expertise, moreover, 
at most two of the parameters may be amenable 
to individual physical determination, together 
with the ratio of the remaining two. However, 
McNabb and Foster [1] showed convincingly in 
their elegant paper that the model "does appear to 
explain many anomalies that have been reported 
in the literature" (concerning diffusion of hydro- 
gen in iron and ferritic steels), and this has led to 
considerable interest in numerical solutions of 
the model. 

The first reported numerical solution to the 
McNabb and Foster model in one finite space 
dimension was published by Caskey and Pillinger 
[2] in 1975; this appears now to be regarded as 
standard, and is quoted as such for example by 

Frank et al. [3], who show how the same com- 
putational scheme may be adapted to one of the 
many possible modifications of the basic model. 
We present here a computationally more efficient 
scheme, requiring less computer storage, and 
describe how the run-time of the relevant compu- 
tations may be reduced from that required for the 
Caskey and Pillinger scheme whilst retaining the 
same order of accuracy. We also indicate how 
better accuracy can be obtained with little increase 
in computational complexity. 

2. The McNabb and Foster model in one 
finite space dimension 

The model under consideration here (and also, it 
is to be inferred, in the paper by Caskey and 
Pillinger [2]), refers physically to diffusion of 
hydrogen through a metal plate of uniform thick- 
ness a, with plane end faces, under a constant 
concentration K of hydrogen at the input face, 
zero at the output face. No account is taken of 
possible "edge effects" where the plate is clamped 
into the containing vessel, so that the plate is most 
usefully thought of as thin (say, a metal foil), 
with a small compared to the dimensions that 
characterize the cross-section parallel to the end 
faces. This cross-section is assumed to be simply 
connected, but no other specific assumptions are 
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made as to its shape; in view of the simplifying 
assumptions of the model, however, a simple 
shape such as a circle or rectangle would seem the 
most appropriate. 

The McNabb and Foster model, hereafter 
referred to as the MF model, is a system of six 
equations. Denoting physical distance and time 
b y X ,  T, where O<<.X<~a and T~>0, let: C(X, T) 
denote the number of  atoms per unit volume (of 
metal) of diffusing hydrogen; N be the (constant) 
number of  traps per unit volume of metal; v(X, T) 
be the fraction of these traps occupied by a cap- 
tured hydrogen atom; D be the diffusion coef- 
ficient (in cm 2 sec-1); g be a parameter (of 
dimension L 3 T -1 ) such that the number of hydro- 
gen atoms captured per second by traps in a vol- 
ume element 6V is K CN(1--v)6V; and p (in 
sec -1) be the reciprocal of the mean time-of-stay 
of a captured atom in a trap. Then the driving 
equations are 

av a2C 
- -  + X ~ - ~  = D a - ~  ~- ( 1 )  

av 
- tcC(1 - -  v )  - -  p v  ( 2 )  

aT 

and both are obeyed on (0, a) • ~+. 
The boundary conditions for C correspond to 

C(0, 7) = K, r~> 0, (3) 

and 

C(a, 7) = O, V>~O, (4) 

where K is a constant. The initial conditions 
(corresponding, in the physical model, to vacuum 
in both the input and output chambers for T <  0) 
are 

c ( x ,  o) = o (o < x <<. a) (5) 

and 

v(X, O) = 0 (0 < X < a). (6) 

Clearly these six equations define a well-posed 
problem, given the assumption that the parameters 
N, D, K, p, K are all constant. Caskey and Pillinger 
[2], however, and Frank et al. [3], add two fur- 
ther equation giving boundary conditions for v, 
impossible to justify or even comprehend either 
for the physical model or for a mathematical 
system devoid of any X-derivative (let alone a 
second X-derivative) of v. 

McNabb and Foster [1] propose two dimension- 
less forms of their model in both of which X = 
ax, T = (a2/D)t (where x E [0, 1], t /> 0 represent 
reduced distance and time) and C(X, 7) is replaced 
by Ku(x, t). In the first of  these, v(X, T) is replaced 
by v(x, t), yielding what we shall now call the 
MFC system: 

au av a2u 
- - + 1 3  - 
a t  at ax 2 
av 

- -  P U  - -  # V  - -  12ZIV 
at 

(7) 
(x, O E ( 0 , 1 ) •  + 

(8) 

u(0, t) = 1 t l > 0  (9) 

u(1, t )  = 0 t>~0 (10) 

u(x,O) = 0 0 < x ~ < l  (11) 

v(x,O) = 0 0 < x < l ,  (12) 

where /3 =N/K,  the number of  traps per input 
hydrogen atom, /a = (a2/D)p, and v = (aZ/D)KK, 
are dimensionless parameters. 

For reasons that we shall enlarge on below, 
this is certainly the easier dimensionless form to 
work with. Published numerical work to date, 
however, has concentrated on the second form, 
in which 13v(X, T) is replaced by w(x, t), so that 
the parameter 13 does not appear, but the parameter 

X = 13v (13) 

a 2 

= - -  t ~ N  
D 

is introduced. Equations 3 and 4 thus become 

au aw a2u 
+ - (14) 

at at ax 2 

and 

a w  
- -  = X u - t l w - ~ , u w  (15) 
at 

on the same domain as above, and w replaces v in 
Equation 12. We defer detailed consideration of 
why the first of  these dimensionless formulations 
is preferable for numerical work to later para- 
graphs. It is clear, however, from X = flu, firstly, 
that two of the three parameters t3, X and v must 
be set independently, and secondly, that neither 
formulation restricts the choice of the pair on 
which attention will be focussed. Since the MF 
model takes account of three time constants 
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(a2/D, 1/p and lIKe) involved in hydrogen dif- 
fusion, there is a good argument in favour of  selec- 
ting /3, /~ and either X or v for the determining 
parameters; these dimensionless quantities reflect 
the physical parameters N, p and K with the 
greatest fidelity. 

The second dimensionless formulation is often 
preferred on physical grounds, because w is a 
dimensionless scaling of the concentration of 
trapped hydrogen, and so is a quantity of the 
"same kind" as the dimensionless scaling of the 
concentration of free hydrogen, u. There are, 
however, obstacles to the physical interpretation 
even of the second formulation. Of the four para- 
meters involved in the two formulations, 13 alone 
has a direct physical meaning; the other three are 
all products of a2/D with some quantity of dimen- 
sion (time) -1 , and so depend, for their physical 
interpretation, on the choice both of the metal 
and of the thickness, a, of the metal specimen. 

The MF system thus presents two quite distinct 
problems: one of efficient and reliable numerical 
solutions of a non-linear multiparameter system, 
the other of physical interpretation of the com- 
puted output. We have opted, in this paper, not to 
prejudge the choices the reader may wish to make, 
whether of D, of  a, or of the determining para- 
meters. In a later paper and in the context, also, 
of  more complicated MF models, we hope to pre- 
sent detailed physical interpretations based on 
actual ranges of values of D and of a. Here we are 
only concerned with presenting an efficient method 
of arriving at numerical values whose reliability 
can be estimated, so we have chosen specific para- 
meter values primarily to illustrate the points we 
make in the analysis of our scheme. 

3. Numerical solution of the M FC system 
Before detailing our scheme, and to avoid con- 
fusion due to the unusual use, in this context, of 
the word "convergence" by Caskey and Pillinger 
[2], we briefly review the chief factors to be 
looked for in any finite difference replacement of 
a system of differential equations. The first is 
consistency: that is, the difference equations must 
converge to the differential equations as the mesh 
constants h, k tend to 0 (not necessarily indepen- 
dently; in particular, we shall require the mesh 
ratio r to remain fixed). 

Given consistency, one asks for stability and 
convergence. Stability is independent of the 
differential equations, and requires that the 
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difference between the theoretical and computed 
solutions to the numerical scheme remain bounded 
as n-+ oo. Convergence, on the other hand, is 
independent of the computed values, and requires 
that the theoretical solutions to the numerical 
scheme tend to the theoretical solution of the 
differential equations as the mesh is refined in a 
prescribed manner. 

Given all these, one asks for accuracy and, 
beyond that, for a scheme that is efficient, i.e. 
uses the minimum computing time and storage. 

Turning now, to the finite-difference replace- 
ment of the MFC system, let h denote the x-step, 
k the time-step, and r = k/h 2 the mesh ratio. 

n n denote u(mh, nk), v(mh, nk), Further, let urn, Vm 
w h e r e m = 0 ,  1 . . . .  M = l / h a n d n = 0 ,  1 . . . .  
Approximating in the usual way, (3Y/3t) lx=,nh by 
O'~n +1 - - y n  )/k, (y = u, v) and (~2U/3X2)lt=_nk by 

rt n 2 
/'/ra+ 1 )/h a (um-~ -- 2UTn + , direct replacement 

of the MFC system leads to a computational 
system of extremely restricted stability, in which 
r must be confined to (0, O] with p < l .  To 
attempt to extend the range of admissible values 
of  r, one uses the device first introduced by Crank 
and Nicolson [4], of "averaging" the right-hand 
sides of Equations 7 and 8 over the time levels 
(n + 1)k and nk. Caskey and Pillinger [2] went 
further, introducing an extra parameter 0 "that 
allows admixture both forward and backward in 
time"; this, it turned out, meant that (O2u/~xZ) 
was replaced by 

l l n + l  [O(un+l-1 -- 2u~ +a + "~,,+1 ) + (1 -- 0)(un-1 

- -  2 u ~  + /h  2 , u~,+,)] 

where 0 ~< 0 <~ 1. It is, however, easy to show that 
with 0 = �89 the local truncation error for the 
replacement of Equation 4 is 0(k2), but that it 
deteriorates to 0(k) if 0 @ 1 is used, needlessly 
leading to a substantial loss of accuracy. For this 
reason, we do not introduce 0 as a parameter to 
our scheme, and use the approach of Crank and 
Nicolson [4] tmamended. 

The replacements of Equations 7 and 8 are thus 

f_ (Urt+l ~ n+l  
u 2 1  - u p .  + t3(v~21 - v ~ )  = 2 ~ ,.-1 - z u , .  

r Ft 
,+1 , +~(um-1 -- 2u~n + ut~+ 1 ) (16) q- Urn+ 1 ) 

and 



q~n+l n k . n+l 
= - -  __ pUre  V m  ) u r n  - -  V r n  " 2 ( P U r e  ~)P-n +1 n+l n + l  

k . 
+ ~(VUm -- Pv n -- v u n v  n )  (17) 

for m E , / g  = {1 . . .  M -- 1 }, and n ~> 0. 
Now, the main computational difficulty of the 

MF system resides in the non-linearity of Equation 
2. Given any boundary and initial conditions, the 
system driven by Equations 16 and 17 would 
normally be solved as follows: 

n+l n At time level (n + 1)k, urn is replaced by Urn 
on the right-hand side of Equation 17, and Equa- 

n§ this approximation to tion 17 is solved for vm , 
v"+l is substituted into Equation 16 to yield an tn 

n+l is sub- n+l . this value of urn approximation to Um , 
stituted into Equation 17 and the process repeated 
until requisite degrees of agreement are attained 

n+l and of between successive iterates both of Um 
vn+l This iterative process is extremely time- m �9 
consuming and expensive;to avoid it one linearizes 
Equation 17. Accordingly, replacing urnn+l vmn+~ by 
the product of the first-order Taylor expansions, 
Equation 17 becomes 

q] n+ l rt k 
= - -  ?)l.Ur n "Orn - r n  - -  ~Om 2- [ p U r r S 1  _ _  ]./,7.)~r~1 - n + l  n 

n n+l +UrnVr~ )] + O,u~-uvP.) 

(lS) 

after simplification. This is the most direct and 
trouble-free linearization (it corresponds exactly 
to that used by Caskey and Pillinger [2] ). 

The boundary conditions on u are replaced by 

u~ = 1 ,u~  = 0 (n = 0 , 1 , . . . )  (19) 

and the initial conditions on u and v by 

o = 0 (m E~g/). (20) HO ~ /)m 

(Note that there are no boundary conditions on v!) 
Presented in a manner that may facilitate com- 

parison with the Caskey and Pillinger [2] scheme, 
Equations 16 and 18 yield (for m E J / a n d  n ~> 0) 
the relations 

r n+l ~_ -~ n+l r n+l 
2 urn-1 l~mUm - -~um+,  = Crn, (21) 

and 

vrnn+l = . . r n . r n R  , ,n+l + Srn (22) 

where 

Rrn = Zm/dm, 

d m = 2 + k(la+ run ) ,  

Zm = kv(1 n - -  Vrn)~ 

Krn = l + r + / 3 R m ,  

r n 
Crn = ~(Um-1 + un+ , )  + (2 --Kra)UPn 

and 

Srn 

2k~v~ + -  
din 

(2  - ku)v~ + grub. 
drn 

Using Equation 19, Equation 21 may be solved 
b y  the recurrence relation 

un+arn = A mun+lrn-I + Brn (m = 1 . .  . M )  (23 )  

whence Equation 22 may be evaluated directly. 
n+l q_Bm+l for n+l Substituting An+lure Um+l in Equa- 

tion 21 yields 

r 2Cm + rBm+1 

A m  2Km --rAm+l Bm 2Kin --rAm+l 

(m e~')  

with, by Equation 19, AM = BM = 0. 

(24) 

4. Consistency, stability and accuracy 
The scheme is certainly consistent; the actual 
local truncation errors (which we shall need to 
refer to in the discussion of accuracy) are 

1 ( k  2 ~4M h2 O4/d~ 
(25) 

1Z 0x2at 2  -Ts! 
for the replacement of Equation 1, and 

k2 [ 32u  32V [ 3 2 u  32v~] 

12 v - ~  -- # - ~  -- v ~ v - ~  + u ot2]] 

(26) 

for the replacement of Equation 2, the replace- 
ment of the initial and boundary conditions being 
error-free. 

It is not possible to discuss stability and con- 
vergence independently for a non-linear system; 
nor is there a method, to date, of ascertaining 
necessary and sufficient conditions for the con- 
vergence of the replacement of a non-linear 
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system with an unknown analytic solution. This 
brings us, however, to the chief advantage of the 
MFC formulation, namely that both u(x, t) and 
v(x,  t) must lie in [0, 1] for all (x, t ) E ( 0 ,  1) x 
R~. Consequently, it is possible, in place of con- 
vergence, to make the minimal demand on the 
numerical scheme, that 

u~  and v~n also lie in [0, 1] for all m ~K," 

and n/> 0. (27) 

Assuming, first, that our scheme satisfies Condition 
27, and supposing /3 > 0, application of the yon 
Neumann method [5] of stability analysis shows 
that the scheme is unrestrictedly stable if v = 0, 
and that, for p < 0, local stability is guaranteed if 

ku [ u ~  1 -- u ~  - (~(v~ 1 -- vn~)] ~< 4 (28) 

for m E ~ / .  Given Condition 27, this condition 
will certainly hold if 

4 
k <~ - -  (29) 

. ( l  + ~)" 

Examination of the scheme then shows that 
Condition 27 can be guaranteed if 

0 < r < 1, (30) 

k ( v - - p ) < ~ 2  (31) 

and 

� 8 9 1 8 9  l)  
l - - r +  ( l + � 8 9  2 ' >--e/M 

where e is the working tolerance. 

(32) 

Given r~< 1 and Condition 32, but not Con- 
n and n may exceed 1 though dition 31, both Um Vm 

this would not necessarily be evident if only the 
relative flux is printed out; u~ and v~, in particular, 
should be tested in this case, to guard against 
persistent error. 

Given r ~< 1 and Condition 31, but not Con- 
n dition 32, Urn may be less than 0 for some rn < 

M - -  1. The intrusion of e, here, into a condition 
for a convergence-related property, is caused by 
the substitution of 0 for several very small quan- 
tities into the true condition in which the right- 
hand side is 0; this is of negligible importance. Far 
more serious is the fact that Condition 32 is the 
most restrictive of the conditions we have found, 

n ~> 0 for a range of values of m and that testing urn 
is extremely expensive. 

The argument leading to the results just repor- 
ted may be outlined as follows: 

3126 

For m E ~  and /3>0,  if c2>~c1>~0 and 
E1 = l + r + c l  < < - K m < ~ l + r + c 2  = E 2 ,  it fol- 
lows that 

where 

Frn <-.Am <<. Grn (33) 

r 1 -- (r/s) 2(M-m) 

S 1 -- (r/s) :(M-re+l) 

and s = E l  + [ (E1)2- - r  211/2; Fm 
defined with a = E2 + [(E2)2 _ r 2 ] 1/2 
s. If, further 

then 

where 

is similarly 
replacing 

P<~Crn <~Q (34) 

Pm <~Bm <~Qm (35) 

Qm = ~ r " 1 + (r/s) M-m§ 

and P, cr replace Q, s, respectively, in the definition 
o f P  m. From these results it follows that, if 

Q<~Q* = 

( l + c l )  + [ l _ ( r ) M _ , l [ l ~ i r ) M l  

and 

(36) 

p >~p* = 

(37) 

n §  thenurn C [ 0 , 1 ]  f o r a l l m E ~ ' a n d n ~ > 0 .  
Application of Equations 36 and 37 to the 

special case, v = 0, of unrestricted stability, leads 
to Condition 30. Since Condition 27 must hold, 
for sufficiently small h and k, if the scheme is con- 
vergent, and convergence is clearly impossible if 
we cannot guarantee Condition 27 in the v = 0 
case (when v remains identically zero), we assume 
that r satisfies Condition 30 for the remainder of 
the argument. 



With flu > 0, account now needs to be taken 
n . that is, C m -  of the dependence of v ~  on urn, 

1 rt  
~r(u ,n_ i  + u ~ )  must be expressed as a function, 

n alone in order to determine the f say, of  Urn 

bounds, P and Q, on Cm. This leads to a step by 
step argument. It is easily verified that u~m E 
(0, 1) and V~m > 0, by the results already estab- 
lished; v~  ~< 1 if Condition 31 is satisfied. To 

2 ensure urn >>" O, f'(Uam) must be non-negative for 
all m E ~ ' ,  leading to Condition 32, and Condition 
31 then ensures that none of the u2m or V2m exceed 
1. These conditions are then shown to ensure that 
uZm ~>u~ and V2m ~>vXm, so that the same con- 
ditions apply at each subsequent time step. 

5. Accuracy and efficiency 
One way of improving the accuracy of a finite 
difference scheme is to reduce the mesh spacings 
h and k, keeping the mesh ratio r fixed. With r = 
k / h  2 , halving h thus means quartering k, and the 
amount of computation can rise dramatically if 
1/h is already large. An alternative is to use 
Richardson's method of deferred approach to the 
limit [5]. Here we assume that the local trunc- 
ation error, i.e. the difference between the analyti- 
cal solution u and the finite difference solution U, 
can be expressed as a power series in one of the 
mesh constants. 

Applied to our scheme, for which the local 
truncation error is 0(h 2 + k 2), this gives 

u = U + e l h  2 + e 2 h  4 . . .  +e jh  z/ . . . .  (38) 

where el, e 2 . . .  ej are the coefficients of the expan- 
sion and we assume 

ley I ~ lej+l I (1"/> 1). (39) 

If  the finite difference~scheme is solved using 
h = 2 / / a s  the step length in the x-direction, then 

u = U1 + 4 e l H  2 + 1 6 e 2 H  4 . . .  (40) 

repeating the computation with h = H  and r 
unchanged gives 

U = U2 + e l H  2 + e2 H4  . . .  (41) 

Elimination of e I between these two equations 
leads to 

?1 --~ l (4U2 -- U1 ) -~ 0(H 4), (42) 

so that, if Condition 39 is justified, 

(4U2 -- U1) (43) 

is a better approximation to the true solution u. 

Depending on the size of the derivatives in Equa- 
tions 25 and 26, the use of  this method can make 
quite small values of M acceptable. 

A further improvement in accuracy is obtained 
if the singularity, at (0, 0), of  the MFC system is 
taken into account. Since the numerical solution 
of any system can, at best, tend only to the theo- 
retical solution, the perturbation caused by the 
discontinuity of  the boundary at the origin can be 
appreciably reduced if u(O, 0) is replaced by the 
expected value, �89 of a Fourier series approximat- 
ing u, at the point singularity (see also Crandall 

[61). 
To compare the efficiency of our scheme with 

that of  Caskey and Pillinger [2] we wrote a 
special program, taking the same care there as in 
our own program to avoid repeated accessing of 
the same element of a vector as far as practicable. 
Trial runs using coarse mesh spacings o f h  = 1/20, 
k = 1/800 indicated that the run-time for our 
scheme is just under 80% of the Caskey and Pillin- 
ger [2] scheme. Six vectors were needed for our 
scheme, compared with eight for the Caskey and 
Pillinger scheme. 

Now, whilst a 20% saving in run-time and a 
concomitant saving in storage are certainly useful, 
they still do relatively little to bring down the 
expense of each run if mesh spacings such as the 
h = 1/100 and k =  1/20000 of Caskey and 
Pillinger [2] have to be used. Use of Richardson's 
method leads to a major improvement in efficiency 
[5]. 

6. Behaviour of the scheme in practice 
Figs 1 and 2 give examples of curves obtained 
using our scheme together with the deferred 
approach to the limit method and the device of 
setting u(0, 0) to �89 (relative flux = (output flux at 
time t)/equilibrium flux). Fig. 3 shows the corres- 
ponding curves for u and v when equilibrium 
(steady state) is attained. Although in Fig. 3 the 
Veq curves appear to have been plotted on [0, 1] 
they are, in fact, plotted on [0.002, 0.998]. Note 
the considerable distortion that would result from 
the Caskey and Pillinger condition w(0, t ) =  
/3v(0, t ) =  0. To discuss all these, we begin by 
reporting our tests of the validity of using the 
Richardson method. 

Fhe sizes of the derivatives in Equations 25 and 
26 are much influenced by the values of the para- 
meters /3, /~ and v, and the laws governing these 
dependences appear to be complicated. So it is 
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Figure 1 Relative flux against reduced time. 

vital to test Condition 39 as there may be regions 
o f  the parameter space in which the increased 
contribution from the e2 term in Equation 38, 
occasioned by the use of  Richardson's method, 
outweights the elimination of  the el term. Two 
straightforward test methods are available. 

The first, which can be used at any arbitrarily 
fixed point of  the parameter space, consists of  
running the program with, for example, M = 20, 
40 and 80 in turn (keeping r constant), and com- 
paring the results of  applying Equation 43 to the 
output from the first two with the output from 
the third. This is an expensive test, as the run- 
time for M =  80 is over four times the total 
required to run first with M = 20 then with M = 
40 and finally applying Equation 43 to the results. 

l 

. - ,  A 

~- 0.8 

0.6 ] / " ' - / "  [ except on pure 

0.4 =10 

o , / / / :  ooo 
~176 o.z 0.4 0.6 018 1.0 l z 

reduced tirn% t 
Figure 2 Relative flux against reduced time. 
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Figure 3 Equilibrium u(x) and v(x) against relative dis- 
tance. For Veq curves 13 > 0, u = 100, u = 10(X), 100 (C), 
1000 (M). 

The second method combines a test of  Con- 
dition 39 with a numerical test of  convergence. 
This is relatively inexpensive, but can only be used 
on or near bounding planes of  the parameter space. 

To test convergence numerically rather than. 
theoretically, one or more of  the parameters can 
be set to zero (or allowed to approach 0), so that 
the system of differential equations reduces to 
an allied linear problem which can be solved 
analytically. The seemingly most attractive test, 
therefore, would be to run the program with 
/3 =/.t = u = O, and compare the output  with the 
relative flux, 

1 + 2  ~ ( - -1 )  n exp (--n2rr2t) (44) 
n = l  

for the corresponding pure diffusion system. 
Unfortunately this is an insensitive test, of  deba- 
table value even as a program "de-bugging" device. 

Fortunately, a simple and much more sensitive 
test is available. For, with v = O, but both  ~ > 0 
and p >  O, a case that corresponds in the MFC 
formulation to non-zero input, non-zero trap con- 
centration and release rate, but "non-trapping" 
traps, it is easily proved that v must remain identi- 
cally zero and the MFC system again reduces to 
its corresponding pure diffusion problem. It 
should be noted that this test is not available in 
the dimensionless formulation driven by Equa- 
tions 14 and 15; on the other hand, the compli- 
cated test made by Caskey and Pillinger [2],  with 
p = 0 and X p >  O, corresponding there to zero 
input, is not available in the MFC formulation, 



where it would require infinite/3; the simplicity 
of  Equation 44 compared to the analytical solu- 
tion for the 7,/2 > 0, u = 0 case is, we contend, yet  
another reason for preferring the MFC formulation. 

Calculating Equation 44 to the same working 
tolerance, e = 5 x 10-s ,  to which we calculate 
the relative flux in our programs, we find, indepen- 
dently of  the positive values chosen for/3 and/2, no 
deviation exceeding 4 x 10-5 between the output 
from our program and the analytical solution, 
provided that r is kept to (0, 1]. This is illustrated 
in Fig. 4; v remains indistinguishable fi'om 0 to 
the maximum accuracy of  the computer. Refer- 
ring back to a point made earlier, it is worth add- 
ing here that the deviation graphs shown bear 
scant resemblance to those obtained if u(0, 0) is 
kept at 1. An experiment with r = 1/2 revealed, 
in place o f  the well-behaved curve shown in Fig. 4, 
a curve that oscillated rapidly, with peaks of  the 
order o f  - 7 x  10 -s for t < 0 . 1 2 ,  and still of  
-+ 3 x 10-5 near t = 0.35 (where the experiment 
was terminated). The MFC system, it seems, is a 
further example of  the high sensitivity to coarse 
mesh spacings reported by Crandall [6] for para- 
bolic equations with 0 - 1  singularity at (0, 0). 

With the validity of  Equation 39 established, 
we next explored the necessity, in practice, of  the 

n and n three conditions to guarantee that all U~n Vm 
lie in [0, 1]. 

First, in the u = 0 test already described, we 
tested r values up to 2. Now, as Fig. 4 shows, 
accuracy decreases as r increases: with r = 2 the 
maximum deviation from Equation 44 does, how- 
ever, exceed 3e, and the corresponding curve 
could not be included in Fig. 4. There are thus 
two valid reasons for restricting r to (0, 1 ]: either 
to guarantee a convergence-related condition or 
to maintain an acceptable order of  accuracy. 
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Figure 4 Deviation, for r values shown, of relative flux for 
v = 0 and j3u > 0 from pure diffusion. 

The points on the three curves with/2 = p = 
100 in Fig. 1 were all calculated using r = �89 and 
M = 20 and 40. Only for the/3 = 1 curve is Con- 
dition 32 satisfied for both M values; for the/3 = 10 
curve, Condition 32 is satisfied only when M = 40; 
and for the /3 = 100 curve, Condition 32 is not 
satisfied at all. To reduce testing costs, we decided 
to examine the equilibrium values o f  u and v, 
arguing that any persistent error must perturb 
these, rather than test u~,, t> 0, We found agree- 
ment, well within our working tolerance, with the 
theoretical values 

and 

uoq(x )  = 1 -  x (45) 

%q(X) - (46) 
/2 + VUeq(X) 

It is interesting to note about the formula for veq 
firstly that it is independent of  the value of/~ < 0, 
secondly that is is invariant under simultaneous 
magnification of/1 and v by the same factor; since 
the ratio v: /2=KK: p, this observation may be 
rel~evant to the very brief discussion by Caskey and 
Pillinger [2] of  their Fig. 3c, but this is difficult 
to ascertain in view of  the lack of  information 
concerning the interpretation o f  their expression 

u0 + w0. 
We have illustrated the formula for Veq, in Fig 

3, for all the sets of  parameter values occurring in 
Figs 1 and 2; since Iveo=(i/20) --  Veq(i/20)l was of  
the order of  1 x 10 -6 or less for i =  1 . . .  19 
(where Veo~r(x) is the value obtained from the 
f'mal v vectors at x after applying the Richardson 
method to the h = 1/20 and h = 1/40 runs, and 
%q(X) is obtained from the formula above), all 
19 computed equilibrium points do lie on the 
relevant curve for each set of  parameters with 
/3<~ 10 (the /3= 10 run in Fig. 1 was terminated 
before reaching equilibrium). 

Finally, with reference to stability, since 
Condition 29 is a sufficient, but not necessary, con- 
dition for Condition 28, we included in the r = �89 
M =  20 run for the u =  1000 curve of  Fig. 2, a 
direct test of  Condition 28; the upper bound of  4 
was nowhere exceeded. 

7. Adaptabi l i ty of the scheme 
As an instance of  the ease with which our scheme 
can be adapted, we detail here how it may be 
altered to replace the dimensionless form driven 
by Equations 14 and 15 in Equation 22: 
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w replaces v; 
z ,n  becomes k(X -- uw~); 
/3 disappears from the expression for K, ,  ; 
the final term of the expression for C becomes 

2 k l ~ w n  / d m  ; 

w replaces v, X replaces v in the numerator of 

Sm.  
More valuably, we have successfully used the 

scheme to investigate MF systems with more com- 
plicated, time-dependent boundary 'condit ions.  
The results of these investigations will be detailed 
in a subsequent paper; it is, however, worth 
reporting here that these MF systems yield extre- 
mely sensitive tests of (numerical) convergence if 
any one of the parameters /3,/a, u is allowed to 
approach 0, the other two parameters remaining 
fixed and positive. The results of these tests 
strongly suggest that the scheme is convergent, 
and show that Condition 39 holds on all three 
bounding planes of the parameter space. 

Finally, we have successfully extended our 
scheme to MF systems with x-dependent N. In 
view, however, of the assertion that " . . . i t  is 
possible to incorporate a time variation of N . . .  
into the computer program" in the paper by Frank 
e t  al. [3], we should mention that, whilst this is 
certainly possible, it is by no means acceptable 
using our scheme or any other. With a time- 
dependent N the argument that led McNabb and 
Foster to Equation 1 now leads to a new model. In 
this, N must have a continuous time-differentiable 
time derivative, and Equations 7 and 8 become 

3u 3v 3t3 32 u (47) 
3S- + + - 3 x  2 

and 

3 v  0/3 = u/3u - -  t48v - -  v/3uv. (48) 

A third driving equation is evidently needed if/3 
is not a known function of t. 

The finite-difference replacement of each time- 
dependent-/3 model presents its own problems, 
depending on the assumptions made about/3, and it 
is no longer suitable to speak ofamere  "extension" 
of our scheme. Our experience to date has shown 
that great care needs to be exercised to keep the 
local truncation error sufficiently small, and 
further analysis of the resulting scheme becomes 

so difficult that it is best replaced by tests, using 
the appropriate MF (i.e. constant /3) system as 
a test-bed. 

8. Conclusions 
Using a dimensionless formulation of the McNabb 
and Foster model that is better adapted to numeri- 
cal work than the formulation used in previously 
published studies, we have been able to: 

(1)Present a more efficient scheme, which, 
using simple techniques, yields more accurate 
results using approximately 20% of the computer 
time, and using less than one-third the storage of 
the method recommended by Caskey and Pillinger 

[21; 
(2) Present bounds on computation parameters 

which guarantee results with a measure of relia- 
bility; 

(3) Suggest a variety of tests that may be 
incorporated into the program where the above- 
mentioned bounds are not practicable. 

The scheme may be adapted to a variety of 
conditions, and we have presented driving equa- 
tions that may be used if the trap concentration 
depends on time. 
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